ADVANCES IN POLAR SCIENCE ›› 2013, Vol. 25 ›› Issue (4): 425-435.DOI: 10.3724/SP.J.1084.2013.00425
Previous Articles Next Articles
Peng Li1,2, Wang Guiqin1, Jiang Xiaoying1,2, Lai Yongwang1,2
Received:
2013-03-27
Revised:
2013-05-21
Online:
2013-12-30
Published:
2013-12-30
Contact:
Guiqin WANG
Peng Li,Wang Guiqin,Jiang Xiaoying,Lai Yongwang. THE PROSPECT OF HIGH-PRECISION THERMAL IONIZATION MASS SPECTROMETRY(TIMS) APPLICATIONS IN ANTARCTIC METEORITES[J]. ADVANCES IN POLAR SCIENCE, 2013, 25(4): 425-435.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.chinare.org.cn/EN/10.3724/SP.J.1084.2013.00425
[1]Wittmaack,K.Secondary ion mass spectrometry as a means of surface analysis[J].Surface Science,1979,89(1–3):668-700[2]Mitchell,D.F.,Sproule,G[J].I. & Graham,M. J. Measurement of hydroxyl ions in thin passive oxide films using secondary ion mass spectrometry. Applications of Surface Science,1985,21(1–4):199-209[3]Waight,T.,Baker,J[J].& Peate,D. Sr isotope ratio measurements by double-focusing MC-ICPMS: techniques,observations and pitfalls. Intern. J. Mass Spectrometry,2002,221(3):229-244[4]Ramos,F.C.,Wolff,J[J].A. & Tollstrup,D. L. Measuring 87Sr/86Sr variations in minerals and groundmass from basalts using LA-MC-ICPMS. Chem. Geol,2004,211(1-2):135-158[5]Hahn,O.& Walling,E[J].Possibility of geological age determination of rubidium content minerals and rocks. Zeitschrift Fur Anorganische Und Allgemeine Chemie,1938,236(1/4):78-82[6]Patterson,C.Age of meteorites and the earth[J].Geochimica et Cosmochimica Acta,1956,10(4):230-237[7]Minster,J.F. & Allègre,C[J].J. 87Rb-87Sr dating of LL chondrites. Earth Planet. Sci. Lett,1981,56(0):89-106[8]Snyder,G.A. et al[J].Hf–W,Sm–Nd,and Rb–Sr isotopic evidence of late impact fractionation and mixing of silicates on iron meteorite parent bodies. Earth and Planetary Science Letters,2001,186(2):311-324[9]Lugmair,G.W.,Scheinin,N. B. & Marti,K. Sm-Nd age and history of Apollo 17 basalt 75075 - Evidence for early differentiation of the lunar exterior. Lunar and Planetary Exploration,1975[10]DePaolo,D.J. & Wasserburg,G[J].J. Nd isotopic variations and petrogenetic models. Geophys. Res. Lett,1976,3:249-252[11]DePaolo,D.J. & Wasserburg,G[J].J. Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophys. Res. Lett,1976,3:743-746[12]Lugmair,G.W.,Scheinin,N. B. & Marti,K.Sm-Nd age and history of Apollo 17 basalt 75075 - Evidence for early differentiation of the lunar exterior. Lunar Planet. Sci. Year,6: 1419-14[13]Edmunson,J.,Borg,L[J].E.,Nyquist,L. E. & Asmerom,Y. A combined Sm Nd,Rb Sr,and U Pb isotopic study of Mg-suite norite 78238: Further evidence for early differentiation of the Moon. Geochimica et Cosmochimica Acta,2009,73:514-527[14]Liu,T.,Li,C[J].& Lin,Y. Rb-Sr and Sm-Nd isotopic systematics of the lherzolitic shergottite GRV 99027. Meteorit. Planet. Sci,2011,46:681-689[15]Harvey,J.& Baxter,E[J].F. An improved method for TIMS high precision neodymium isotope analysis of very small aliquots (1–10 ng). Chemical Geology,2009,258(3–4):251-257[16]Amelin,Y.,Krot,A[J].N.,Hutcheon,I. D. & Ulyanov,A. A. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science,2002,297(5587):1678-1683[17]Connelly,J.N.,Bizzarro,M[J].,Thrane,K. & Baker,J. A. The Pb–Pb age of Angrite SAH99555 revisited. Geochimica et Cosmochimica Acta,2008,72(19):4813-4824[18]Bouvier,A.& Wadhwa,M[J].The age of the Solar System redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nature Geosci,2010,3(9):637-641[19]Galer,S.J. G[J].Optimal double and triple spiking for high precision lead isotopic measurement. Chemical Geology,1999,157(3–4):255-274[20]刘希军 et al.高精度铅同位素207Pb-204Pb 双稀释剂TIMS 测试方法[J].地球化学,2013,42(2):103-115[21]Hirt,B.,Herr,W. & Hoffmeister,W. Age determinations by the rhenium-osmium method. Radioactive Dating,1963: 35-[22]Creaser,R.A.,Papanastassiou,D[J].A. & Wasserburg,G. J. Negative thermal ion mass spectrometry of osmium,rhenium and iridium. Geochimica et Cosmochimica Acta,1991,55(1):397-401[23]Shirey,S.B. & Walker,R[J].J. Carius Tube Digestion for Low-Blank Rhenium-Osmium Analysis. Analytical Chemistry,1995,67(13):2136-2141[24]Shen,J.J.,Papanastassiou,D[J].A. & Wasserburg,G. J. Precise ReOs determinations and systematics of iron meteorites. Geochimica et Cosmochimica Acta,1996,60(15):2887-2900[25]Chen,J.H.,Papanastassiou,D[J].A. & Wasserburg,G. J. Re-Os systematics in chondrites and the fractionation of the platinum group elements in the early solar system. Geochimica et Cosmochimica Acta,1998,62:3379-3392[26]Smoliar,M.I.,Walker,R[J].J. & Morgan,J. W. Re-Os Ages of Group IIA,IIIA,IVA,and IVB Iron Meteorites. Science,1996,271:1099-1102[27]Meisel,T.,Walker,R[J].J. & Morgan,J. W. The osmium isotopic composition of the Earth's primitive upper mantle. Nature,1996,383(6600):517-520[28]Li,J.et al[J].Os,Nd and Sr isotope and trace element geochemistry of the Muli picrites: Insights into the mantle source of the Emeishan Large Igneous Province. Lithos,2010,119(1–2):108-122[29]Horan,M.F.,Smoliar,M[J].I. & Walker,R. J. 182W and 187Re-187Os systematics of iron meteorites - Chronology for melting,differentiation,and crystallization in asteroids. Geochimica et Cosmochimica Acta,1998,62:545-554[30]孙卫东,杜安道,杨刚,谢智 & 陈江峰.董岭ⅢCD铁陨石的Re-Os同位素组成[J].科学通报,2001,(01):66-68[31]Nyquist,L.et al[J].Mn-Cr isotopic systematics of individual Chainpur chondrules. Meteoritics,1994,29:512-513[32]Birck,J.L.,Rotaru,M[J].& Allègre,C. J. 53Mn-53Cr evolution of the early solar system. Geochimica et Cosmochimica Acta,1999,63(23–24):4111-4117[33]Nyquist,L.et al[J].Mn-Cr isotopic systematics of Chainpur chondrules and bulk ordinary chondrites. LPI Contributions,1994,844:28-30[34]Birck,J.-L. & Allegre,C[J].J. Manganese-chromium isotope systematics and the development of the early solar system. Nature,1988,331:579-584[35]Lugmair,G.W. & Shukolyukov,A[J].Early solar system timescales according to 53Mn-53Cr systematics. Geochimica et Cosmochimica Acta,1998,62(16):2863-2886[36]Lugmair,G.W. & Galer,S[J].J. G. Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochimica et Cosmochimica Acta,1992,56(4):1673-1694[37]Nyquist,L.et al[J].Manganese-chromium formation intervals for chondrules from the Bishunpur and Chainpur meteorites. Meteorit. Planet. Sci,2001,36:911-938[38]Wadhwa,M.,Zinner,E[J].K. & Crozaz,G. Manganese-chromium systematics in sulfides of unequilibrated enstatite chondrites. Meteoritics & Planetary Science,1997,32(2):281-292[39]Endress,M.,Zinner,E[J].& Bischoff,A. Early aqueous activity on primitive meteorite parent bodies. Nature,1996,379:701-703[40]Hutcheon,I.D.,Krot,A[J].N.,Keil,K.,Phinney,D. L. & Scott,E. R. D. 53Mn-53Cr Dating of Fayalite Formation in the CV3 Chondrite Mokoia: Evidence for Asteroidal Alteration. Science,1998,282(5395):1865-1867[41]Nyquist,L.,Kleine,T[J].,Shih,C.-Y. & Reese,Y. The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion,differentiation,and secondary mineralization. Geochimica et Cosmochimica Acta,2009,73(17):5115-5136[42]Shukolyukov,A.& Lugmair,G[J].W. Manganese-chromium isotope systematics of enstatite meteorites. Geochimica et Cosmochimica Acta,2004,68(13):2875-2888[43]Sugiura,N.& Hoshino,H[J]. Mn-Cr chronology of five IIIAB iron meteorites. Meteoritics & Planetary Science,2003,38(1):117-143[44]Goodrich,C.A. et al. 53Mn–53Cr and 26Al–26Mg ages of a feldspathic lithology in polymict ureilites[J]. Earth and Planetary Science Letters,2010,295(3–4):531-540[45]Trinquier,A, Birck J-L.,Allègre,C.J.,Gopel,C.&Ulfbeck,D. .53Mn-53Cr systematics of the early Solar System revisited[J]..Geochimica et Cosmochimica Acta,2008,72:5146-5163 |
[1] | . RESEARCH ON SUBGLACIAL CONDITIONS AND PROCESSES OF THE ANTARCTIC ICE SHEET BASED ON BEDROCK ROUGHNESS—A REVIEW [J]. Chinese Journal of Polar Research, 2022, 34(4): 401-418. |
[2] | . Remote Sensing Study On Spatial Distribution of Icebergs Around Antarctica From 2015 To 2020 [J]. Chinese Journal of Polar Research, 2022, 34(4): 0-0. |
[3] | . RESEARCH ON THE LEGAL ISSUES OF ARTICLE IV OF THE ANTARCTIC TREATY [J]. Chinese Journal of Polar Research, 2022, 34(4): 0-0. |
[4] | . A Review and Perspective of the Polar Ice Core Climate and Environmental Research [J]. Chinese Journal of Polar Research, 2022, 34(4): 0-0. |
[5] | Chen Yitong, Gao Xiao. The use and regulation of Unmanned Aerial Systems in the Antarctic and China’s role [J]. Chinese Journal of Polar Research, 2022, 34(3): 329-339. |
[6] | Wang Tao, Shan Shuo, Jin Xinmiao, Yao Xu, Fang Shixiong, Zhang Kanjian. Assessment of solar photovoltaic power potential at Kunlun Station, Antarctica [J]. Chinese Journal of Polar Research, 2022, 34(3): 292-302. |
[7] | Wu Weigang, Zhang Wenqian, Wu Maifeng, Ma Jingkai, Ling Xinfeng. Characteristics and possible causes of long-term wind field variation at Zhongshan Station in Antarctica [J]. Chinese Journal of Polar Research, 2022, 34(3): 278-291. |
[8] |
Li Congke, Li Bingrui, Wang Tao, Chen Yan, Dou Yinke, Yao Xu, Wang Yuchen.
Application and research for the internal support and control system of the Antarctic inland scientific research observation cabin [J]. Chinese Journal of Polar Research, 2022, 34(2): 198-209. |
[9] | Liang Xiangan, Zhang Wensong, Li Ya, Lu Yao, Yang Kang. Evolution of surface meltwater on the Bach Ice Shelf of the Antarctic Peninsula [J]. Chinese Journal of Polar Research, 2022, 34(2): 149-158. |
[10] | Jiang Maozeng, Liu Huirong. The types, structures, and nature of Antarctic international legal norms on regulating scientific activities—Analysis of the documents of the Antarctic Treaty Consultative Meetings [J]. Chinese Journal of Polar Research, 2022, 34(2): 239-253. |
[11] | Zhang Guanqiang, Liao Guanghong. Hydrological characteristics and variation of water masses in the Weddell Sea [J]. Chinese Journal of Polar Research, 2022, 34(2): 159-176. |
[12] |
.
Evolution of water structure under the influence of mCDW intrusion on the continental shelf of Vincennes Bay, Antarctica [J]. Chinese Journal of Polar Research, 2022, 34(1): 51-61. |
[13] | Lin Lijin, Shi Jiuxin, Yao Chenyang, Guo Guijun, Cheng Lingqiao, Jiao Yutian, Shi Qian. Turbulent mixing and its relationship with water mass and circulation in the upper ocean of the Weddell-Scotia Confluence, Antarctica [J]. Chinese Journal of Polar Research, 2022, 34(1): 34-50. |
[14] |
Guan Song, Liu Dahai.
Study on the industrial governance of Antarctic tourism with the view of global governance [J]. Chinese Journal of Polar Research, 2022, 34(1): 81-89. |
[15] |
Wei Yi, Cheng Xiao, Liu Yan, Hui Fengming, Qu Yutong.
Extraction of Antarctic blue ice based on Landsat-8 imagery [J]. Chinese Journal of Polar Research, 2021, 33(4): 496-507. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||