极地研究 ›› 2024, Vol. 36 ›› Issue (3): 438-453.DOI: 10.13679/j.jdyj.20240055

所属专题: 中国极地考察40周年

• 研究综述 • 上一篇    下一篇

冰期旋回中南大洋与热带太平洋相互作用过程与机制

熊志方1,2,王家凯1,秦秉斌1,郭景腾1,李铁刚1,2   

  1. 1自然资源部第一海洋研究所, 海洋地质与成矿作用重点实验室, 山东 青岛 266061;  
    2青岛海洋科技中心, 海洋地质过程与环境功能实验室, 山东 青岛 266237

  • 收稿日期:2024-05-14 修回日期:2024-08-07 出版日期:2024-09-30 发布日期:2024-09-30
  • 通讯作者: 李铁刚, E-mail: tgli@fio.org.cn
  • 作者简介:熊志方, 男, 1981年生。研究员, 主要从事古海洋与古环境研究。E-mail: zhfxiong@fio.org.cn
  • 基金资助:
    极地专项(IRASCC2020-2022-No.01-03-02)、山东省自然科学基金(ZR2023QD186)、国家自然科学基金(42306266)和泰山学者工程项目(TS20190963, TSQN202211265)资助

The interaction processes and mechanisms between the Southern Ocean and the tropical Pacific during glacial cycles

XIONG Zhifang 1,2, WANG Jiakai 1,2, QIN Bingbin 1,2, GUO Jingteng 1,2, LI Tiegang1,2   

  1. 1 Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China;
    2 Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
  • Received:2024-05-14 Revised:2024-08-07 Online:2024-09-30 Published:2024-09-30

摘要: 南大洋翻转环流推动南半球高低纬度之间水团的交换,而热带太平洋是全球水汽和热量的重要源区并推动哈德利和沃克环流以及厄尔尼诺-南方涛动(ENSO)等关键过程的发生,这些过程有效地将热量从热带地区传送至高纬度地区,也在年际至年代际时间尺度上促进了南半球高低纬度之间大气环流的相互作用。热带太平洋与南大洋之间在冰期旋回中呈现出错综复杂的海洋与大气环流间的相互作用,涉及物质、能量与水汽的交换,对全球气候变化产生显著影响。迄今为止,高纬冰芯和沉积岩心记录,已深入地揭示了冰期旋回中受类ENSO过程影响出现南大洋海水温度和海冰与南极降雪等的演变过程。同时,热带沉积岩心记录也显示冰期旋回期间,印度洋-太平洋暖池次表层的升温是南大洋积累的过剩热量,通过浅层翻转环流向北,经由亚热带环流向低纬度传输的结果。这些记录不仅支持南大洋流通性增强会影响低纬度大洋生物地球化学循环的观点,同时也表明冰期旋回中印-太暖池升温引发的类ENSO式变化可能主导着热带太平洋大气环流模式,并对南大洋地区的大气环流产生影响。然而,由于目前在多时间尺度上与热带遥相关有关的古海洋记录有限,这使得目前对南大洋与热带太平洋相互作用过程和机制的理解与评估仍存在诸多不确定性。因此,持续开展多指标环南极柱状沉积物的调查分析工作可以为热带遥相关气候模型提供更真实的环境变化参数,从而减少这些不确定性。

关键词: 类ENSO/SAM, 大气桥梁, 海洋隧道, 热带遥相关, 古海洋记录, 南大洋, 热带太平洋

Abstract: The overturning circulation of the Southern Ocean (SO) drives the exchange of water masses between high and low latitudes in the Southern Hemisphere (SH). Concurrently, the tropical Pacific serves as a crucial source of global water vapor and heat, influencing key processes such as the Hadley and Walker circulations and the El Ni?o-Southern Oscillation (ENSO). These processes effectively transport heat from tropical regions to higher latitudes and foster interactions between atmospheric circulations across the SH on interannual to decadal timescales. During glacial cycles, complex interactions between oceanic and atmospheric circulations are evident between the tropical Pacific and the SO, involving significant exchanges of matter and energy that impact global climate change. High-latitude ice and sediment cores’ records have extensively documented the evolution of sea surface temperatures and sea ice of SO, as well as Antarctic precipitation influenced by ENSO-like processes during glacial cycles. Meanwhile, tropical sediment core records indicate that subsurface warming of the Indo-Pacific Warm Pool during these cycles results from excess heat from the SO being transported northwards via shallow overturning cell and subtropical circulations. These records not only support the notion that enhanced SO circulation affects biogeochemical cycles and material exchanges in low-latitude oceans but also suggest that glacial cycle-induced warming of the Indo-Pacific Warm Pool could trigger ENSO-like changes, dominating tropical Pacific atmospheric circulation patterns and impacting SO atmospheric circulation. However, due to the limited paleoceanographic records of tropical teleconnections across multiple timescales, significant uncertainties remain in understanding and assessing the interaction processes and mechanisms between the SO and the tropical Pacific. Therefore, ongoing investigations and analyses of multi-proxy circum-Antarctic sediment cores are essential to provide more accurate environmental change parameters for tropical teleconnection climate models, thereby reducing these uncertainties.

Key words: ENSO/SAM-like, atmospheric bridge, oceanic tunnel, tropical teleconnections, paleoceanographic records, Southern Ocean, tropical Pacific Ocean