极地研究 ›› 2018, Vol. 30 ›› Issue (1): 22-31.DOI: 10.13679/j.jdyj.20170006

• 研究论文 • 上一篇    下一篇

2012 年夏季水团输送对挪威-格陵兰海营养盐及浮游植物群落结构的影响

辜帆  金海燕  庄燕培  张扬  卢勇  王斌  陈建芳   

  1. 国家海洋局海洋生态系统和生物地球化学重点实验室, 国家海洋局第二海洋研究所, 浙江 杭州 310012
  • 收稿日期:2017-02-06 修回日期:2017-05-22 出版日期:2018-03-30 发布日期:2018-03-30
  • 通讯作者: 金海燕
  • 基金资助:

    国家自然科学基金(41506222, 41076135, 41276198)、南北极环境综合考察与评估专项(CHINARE 2017-03-04,
    CHINARE 2017-04-03)资助

Impacts of water mass on the nutrients and phytoplankton community structures in the Norwegian–Greenland Seas During Summer 2012

Gu Fan, Jin Haiyan, Zhuang Yanpei, Zhang Yang, Lu Yong, Wang Bin, Chen Jianfang   

  • Received:2017-02-06 Revised:2017-05-22 Online:2018-03-30 Published:2018-03-30

摘要:

依托2012 年第五次北极科学考察分析了夏季挪威-格陵兰海域营养盐和光合色素的分布情况, 探讨
水团输送对该海域营养盐分布及对该海域浮游植物群落结构分布的影响。结果显示挪威海和格陵兰海域调
查站位上层(200 m)水体中AT 断面的硝酸盐、磷酸盐及硅酸盐平均浓度分别为9.0(±5.0)、0.65(±0.29)和
1.8(±1.6) μmol·L–1, BB 断面的硝酸盐、磷酸盐及硅酸盐平均浓度分别为8.9(±3.8)、0.71(±0.22)和1.8(±
1.6) μmol·L–1。挪威海和格陵兰海域上层水体中硅酸盐相对于硝酸盐远远不足, 且呈显著硅限制, 该限制随
纬度的升高有所减轻, 表现为北冰洋入流水的硅酸盐输送。光合色素与温度和营养盐的关系表现为: 与温度
呈正相关, 与营养盐呈负相关。光合色素的分布结果表明, 挪威-格陵兰海域浮游植物群落表层以硅藻或硅
藻和定鞭金藻为主, 次表层(叶绿素最大层)则以硅藻为优势种, 并且硅藻更易聚集于混合层下方温跃层上
方, 定鞭金藻在表层水体低营养盐的条件下更具竞争力。此外, 由于受大西洋入流分支的影响, 浮游植物向挪
威-大西洋流流经区域聚集(温度更高且营养盐充分), 形成区域浮游植物分布差异。

关键词: 挪威海, 格陵兰海, 水团, 浮游植物, 营养盐限制

Abstract:

During the fifth Chinese National Arctic Research Expedition cruise in summer 2012, the nutrients and phytoplankton
pigments in the Norwegian–Greenland seas were analyzed, and the effects of water mass transport on both the distribution of
nutrients and the phytoplankton community structures were studied. The results showed that the mean concentrations of nitrate,
phosphate, and silicate were 9.0 (±5.0), 0.65 (±0.29), and 1.8 (±1.6) μmol·L−1, respectively, on section AT, and 8.9
(±3.8), 0.71 (±0.22), and 1.8 (±1.6) μmol·L−1, respectively, on section BB. The concentration of silicate in the upper waters of
the Norwegian–Greenland seas was considerably lower than that of nitrate because of the limited availability of silicon. With
increasing latitude, this limitation diminishes, assuming that the Arctic inflow transports silicon into this area. The distribution
of photosynthetic pigments indicated that diatoms were the principal assemblage in the Norwegian–Greenland seas, and
that the diatoms were most likely to accumulate above the thermocline below the mixed layer. Prymnesiophyta were found
most competitive under low nutrient conditions. In addition, because of the influence of the Atlantic inflow, phytoplankton
were found to assemble in Norwegian–Atlantic flow regions where the temperature was higher and the nutrient supply was
sufficient; thus, forming the differences observed in the phytoplankton distribution.

Key words: Norwegian Sea, Greenland Sea, water mass, phytoplankton, nutrient limitation