ADVANCES IN POLAR SCIENCE ›› 2012, Vol. 24 ›› Issue (4): 315-330.DOI: 10.3724/SP.J.1084.2012.00315
JI Shunying1,LI Chunhua2,LIU Yu2
Received:
2012-04-06
Revised:
2012-04-19
Online:
2012-12-30
Published:
2012-12-30
JI Shunying,LI Chunhua,LIU Yu. A REVIEW OF ADVANCES IN SEA-ICE DISCRETE ELEMENT MODELS[J]. ADVANCES IN POLAR SCIENCE, 2012, 24(4): 315-330.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.chinare.org.cn/EN/10.3724/SP.J.1084.2012.00315
1. Shen H H, Hibler W D, Lepparanta M. On applying granular flow theory to a deforming broken ice field. Acta Mechanics, 1986, 63: 143-160.2. Shen H H, Hibler W D, Lepparanta M. The role of floe collisions in sea ice rheology. Journal of Geophysical Research, 1987, 92(C10): 7085-70963. Lu Q M, Larsen J, Tryde P. On the role of ice interaction due to floe collisions in marginal ice zone dynamics. Journal of Geophysical Research, 1989, 94: 14525-14537.4. Lepparanta M, Lensu M, Lu Q M. Shear flow of sea ice in the Marginal Ice Zone with collision rheology. Geophysica, 1990, 25(1-2):57-74.5. Loset S. Discrete element modeling of a broken ice field-Part II: simulation of ice loads on a boom Cold Regions Science and Technology, 1994, 22:349-360.6. Hopkins M A. On the mesosacle interaction of lead ice and floes. Journal of Geophysical Research, 1996a, 101(C8): 18315-183267. Hopkins M A. Four stages of pressure ridging. Journal of Geophysical Research, 1998,103: 21883-21891 8. Dai M, Shen H H, Hopkins M A, Ackley S F. Wave rafting and the equilibrium pancake ice cover thickness. Journal of Geophysical Research, 2004, 109(C07023): 1-9.9. Shen H H, Ackley S F, Yang Y. Limiting diameter of pancake ice. Journal of Geophysical Research, 2004, 109(C12-35): 1-10.10. Hopkins M A, Frankenstein S, Thorndike A S. Formation of an aggregate scale in Arctic sea ice. Journal of Geophysical Research, 2004c, 109(C01032):1-1011. Wilchinsky A V, Feltham D L. Modelling the rheology of sea ice as a collection of diamond-shaped floes. Journal of Non-Newtonian Fluid Mechanics, 2006a, 138: 22–3212. Selvadurai A P S, Sepehr K. Two-dimensional discrete element simulations of ice-structure interaction. Interactional Journal of Solids and Structures, 1999, 36:4919-4940.13. Lau M, Lawrence K P, Rothenburg L. Discrete element analysis of ice loads on ships and structures. Ships and Offshore Structures, 2011, 6(3): 211–221.14. Lepparanta M. The drift of sea ice. Praxis Publishing, Chichester UK, 2004.15. Dempsey J P. Research trends in ice mechanics. International Journal of Solids and Structures, 2000, 37: 131-153.16. Sanderson T J O. Ice mechanics-risks to offshore structures. Graham and Trotman, London, 1988. 17. Weiss J. Fracture and fragmentation of ice: a fractal analysis of scale invariance. Engineering Fracture Mechanics, 2001, 68: 1975-2012.18. Stern H L, Lindsay R W. Spacial scaling of Arctic sea ice deformation. Journal of Geophysical Research, 2009, 114(C10), doi:10.1029/2009JC00538019. Davis N R, Wadhams P. A statistical analysis of Arctic pressure ridge morphology. Journal of Geophysical Research, 1995, 100(C6): 10915-10926.20. Weiss J, Schulson E, Stern H. Sea ice rheology from in-situ, satellite and laboratory observations: fracture and friction. Earth and Planetary Science Letters, 2007, 255:1-8.21. Schulson E M. Compressive shear faults within arctic sea ice: Fracture on scales large and small. Journal of Geophysical Research, 2004, 109(C07016): 1-23.22. Korsnes R, Souza S R, Donangelo R, et al. Scaling in fracture and refreezing of sea ice. Physica A, 2004, A, 331:291-196.23. Hopkins M A, Tuhkuri J, Lensu M. Rafting and riding of thin ice sheets. Journal of Geophysical Research, 1999a, 104(C6): 13605-13613.24. Flato G M, Hibler W D. Ridging and Strength in modeling the thickness distribution of Arctic sea ice. Journal of Geophysical Research, 1995, 100(C9): 18611-1862625. Wilchinsky AV, Feltham D L, Hopkins M A. Effect of shear rupture on aggregate scale formation in sea ice.Journal of Geophysical. Research, 2010, 115(C10), C10002, doi:10.1029/2009JC00604326. Wilchinsky A V, Feltham D L, Hopkins M A. Modelling the reorientation of sea-ice faults as the wind changes direction. Annals of Glaciology, 2011, 52(57): 83-90. 27. Hopkins M A. A discrete element Lagrangian sea ice model. International Journal for Computer-Aided Engineering, 2004, 21(2-3):409-42128. Hopkins M A, Thorndike A S. Floe formation in Arctic sea ice. Journal of Geophysical Research, 2006, 111, C11S23, doi:10.1029/2005JC00335229. Hibler W D. Sea ice fracturing on the large scale. Engineering Fracture Mechanics, 2001, 68: 2013-204330. Sedlacek J, Lemieux J F, Mysak L A, Tremblay L B, Holland D M. The granular sea ice model in spherical coordinates and its application to a global climate model. Journal of Climate, 2007, 20: 5946-.5961.31. Wichinsky A V, Feltham D L. Anisotropic model for granulated sea ice dynamics. Journal of the Mechanics and Physics of Solids, 2006b, 54:1147-1185.32. Feltham D L. Granuar flow in the marginal ice zone. Philosophical Transactions of the Royal Society A, 2005, 363: 1677-1700.33. Feltham D L. Sea ice rheology. Annual Review of Fluid Mechanics, 2008, 40:91-112.34. Shunying Ji, Anliang Wang, Baohui Li, Yu Liu, Hai Li. A modified discrete element model for sea ice dynamics. Proceedings of the 21st International Conference on Port and Ocean Engineering under Arctic Conditions, 2011, Montreal, Canada.35. 季顺迎, 沈洪道, 王志联, 奚海莉, 岳前进. 基于Mohr-Coulomb准则的粘弹塑性海冰动力学本构模型. 海洋学报, 2005, 27(4): 19-30.36. Shen H T, Chen Y C, Wake A, et al. Lagrangian discrete parcel simulation of river ice dynamics. International Journal of Offshore and Polar Engineering, 1993, 3(4): 328-332.37. Flato G M. A Particle-in-cell Sea-ice Model. Atmosphere and Oceanography. 1993, 31(3): 339- 358.38. Tin T, Jeffries M O. Morphology of deformed first-year ice features in the Southern Ocean. Cold Regions and Technology, 2003, 36: 141-163.39. Marchenko A, Makshtas A. A dynamic model of ice ridge buildup. Cold Regions Science and Technology, 2005, 41: 175-188.40. Hopkins M A, Tuhkuri J. Compression of floating ice fields. Journal of Geophysical Research, 1999, 104(C7): 15815-1582541. Shiraswa K, Lepparanta M, Saloranta T, et al. The thickness of coastal fast ice in the Sea of Okhotsk. Cold Regions Science and Technology, 2005, 42: 25-40.42. Lepparanta M, Lensu M, Kosloff P, Veitch B. The life story of a first-year sea ice ridge, Cold Regions Science and Technology, 1995, 23:279-290.43. Lipscomb, W H, Hunke E C, Maslowski W, et al. Ridging, strength, and stability in high-resolution sea ice models,Journal of Geophysical Research, 2007, 112, C03S91, doi:10.1029/2005JC00335544. Ovsienko S. Numerical modeling of the drift of ice. Izvestiya, Atmospheric and Oceanic Physics, 1976, 12(11):1201-1206.45. 王昕,雷瑞波,孔祥鹏,李志军,张勇. 辽东湾近岸堆积冰表面形态特征分析. 海洋通报, 2008, 27(5): 18-22.46. Hopkins M A, Hibler W D, Flato G M. On the numerical simulation of the sea ice ridging process. Journal of Geophysical Research, 1991, 96(C3):4809-482047. 王永学, 李春花, 孙鹤泉, 李志军. 斜坡式防波堤前海冰堆积数值模拟. 水利学报, 2003, 6:105-110.48. 李春花, 王永学, 李志军, 孙鹤泉. 半圆型防波堤前海冰堆积模拟. 海洋学报, 2006, 28(4): 172-177.49. Hoyland K V. Morphology and small-scale strength of ridges in the North-western Barents Sea. Cold Regions Science and Technology, 2007, 48:169-187.50. Hopkins M A. Discrete element modeling with dilated particles. Engineering Computations, 2004, 21:422-430.51. Hopkins M A. On the ridging of intact lead ice. Journal of Geophysical Research, 1994, 99(C8):16351-1636052. Dumont D, Kohout A, Bertino L. A wave‐based model for the marginal ice zone including a floe breaking parameterization. Journal of Geophysical Research, 2011,116, C04001, doi:10.1029/ 2010JC00668253. Hansen E H, Loset S. Modelling floating offshore units moored in broken ice: model description. Cold Regions Science and Technology, 1999, 29:97-106.54. Hansen E H, Loset S. Modelling floating offshore units moored in broken ice: comparing simulaions with ice tank tests. Cold Regions Science and Technology, 1999, 29:107-119.55. Hopkins M A, Shen H H. Simulation of pancake-ice dynamics in wave field. Annals of Glaciology, 2001, 33: 355 -360.56. Shen H H. Validation of the DEM Application for Pancake Ice Using STAR-CCM+. Report of American Bureau of Shipping, 2011.57. Xu Z, Tartakovsky A M, Pan W. Discrete-element model for the interaction between ocean waves and sea ice. Physical Review E, 2012, 85: 016703.58. Jordaan I. Mechanics of ice-structure interaction. Engineering Fracture Mechanics, 2001, 68: 1923- 1960.59. Qu Yan, Yue Qianjin, Bi Xiangjun, Karna Tuomo. A random ice force model for narrow conical structures. Cold Regions Science and Technology, 2006, 45: 148-157.60. Arenson L U. Numerically modelling the strength of ice using discrete elements. Proceedings of the 2nd PFC Symposium, 2004, Kyoto, Japan.61. Polojarvi A, Tuhkuri J. 3D discrete numerical modelling of ridge keek punch through tests. Cold Regions Scienc and Technology, 2009, 56:18-29.62. Lau M. Discrete element modeling of ship manoeuvring in ice. Porceedigns of the 18th IAHR Interaction Symposium on Ice, 2006, 25-32.63. 季顺迎. 非均匀颗粒介质的类固-液相变行为及其本构模型. 力学学报, 2007, 39(2):223-237.64. Babic M, Shen H H, Shen H T. The stress tensor in granular shear flows of uniform, deformable disks at high solids concentrations. J. Fluid Mech., 1990, 219: 81~11865. Itasca Consulting Group, Particle Flow Code in 3 Dimensions, Online Manual, 2004.66. 季顺迎, 狄少丞, 李正,等. 海冰与直立结构相互作用的离散单元数值模拟, 工程力学, 2011(已录用).67. Konuk I, Gurtner A, Yu S. Study of dynamic ice and cylindrical structure interaction by the cohesive element method. Proceedings of the 20th International Conference on Port and Ocean Engineering under Arctic Conditions. 2009, Lulea, Sweden.68. Konuk I, Gurtner A, Yu S. A Cohesive Element Framework for Dynamic Ice–Structure Interaction Problems Part I: Review and Formulation: Proceedings of 28th Internaional Conference on Ocean, Offshoreand Arctic Engineering, Honolulu, USA, 2009b, OMAE2009-79262.69. Girard L, Weiss J, Molines J M, et al. Evaluation of high-resolution sea ice models on the basis of statistical and scaling properties of Arctic sea ice drift and deformation. Journal of Geophysical Research, 2009, 114: C08015.70. Girard L, Bouillon S, Weiss J, et al., A new modeling framework for sea-ice mechanics based on elasto-brittle rheology, Annals of Glaciology, 2011, 52(57): 123-132.71. Schulson E M, Fortt A L, Iliescu D, Renshaw C E. Failure envelope of fisr-year Arctic sea ice: the role of friction in compressive fracture. Journal of Geophysical Research, 2006, 111: C11S25. |
[1] | . EVALUATION OF ARCTIC SEA ICE EXTENT OF CMIP6 MODELS FROM MAINLAND CHINA [J]. Chinese Journal of Polar Research, 2022, 34(4): 0-0. |
[2] | . ANALYSES OF SEA ICE MONITORING CAPABILITY OF HY-2B, OUC AND NSIDC SEA ICE CONCENTRATION PRODUCTS IN THE ARCTIC AND ARCTIC NORTHEAST PASSAGE AREA [J]. Chinese Journal of Polar Research, 2022, 34(4): 0-0. |
[3] | . Processes underlying the formation and temporal and spatial variability of Arctic polynyas: A review [J]. Chinese Journal of Polar Research, 2022, 34(3): 380-396. |
[4] | Cao Junqian, Qi Di. Review of carbonate system and carbon sinks of seasonal Arctic sea ice-melt pond systems [J]. Chinese Journal of Polar Research, 2022, 34(3): 352-366. |
[5] | Li Yanxing, Chang Liang, Zhang Chunling. Spatial distribution of cloud attributes in spring and its influence on Arctic sea ice decline [J]. Chinese Journal of Polar Research, 2022, 34(2): 177-188. |
[6] | Chang Xiaomin, Li Wenlong, Liu Dalei, Liu Wenhao, Zuo Guangyu, Dou Yinke. Design and experimental use of sea ice image automatic monitoring system in the polar region [J]. Chinese Journal of Polar Research, 2022, 34(2): 210-218. |
[7] | Huang Lin, Qiu Yubao, Zhou Jingtian, Wang Changlin, Liang Xi, Li Qun. Comparison of remote sensing sea ice concentration products for Arctic shipping services [J]. Chinese Journal of Polar Research, 2022, 34(1): 20-33. |
[8] |
Liu Yue, Pang Xiaoping, Zhao Xi, Huo Rui, Liu Chuang.
Analysis of temporal and spatial changes in the extent of the Antarctic marginal ice zone from 1979 to 2018 [J]. Chinese Journal of Polar Research, 2021, 33(4): 508-517. |
[9] | Liu Jingzhou, Zhao Liang, Wang Sheng, Bai Yu. Interannual variation characteristics of sea ice in the Weddell Sea [J]. Chinese Journal of Polar Research, 2021, 33(4): 518-528. |
[10] |
Zhou Xinhao, Liang Yantao, Andrew McMinn, Wang Min.
Progress of metagenomic analysis of marine viromes in polar regions [J]. Chinese Journal of Polar Research, 2021, 33(4): 612-620. |
[11] | Lu Yang, Wang Xiaochun. Parameter estimation of the melt pond parameterization scheme of a sea ice model using an adjoint model [J]. Chinese Journal of Polar Research, 2021, 33(2): 209-221. |
[12] | Mei Hao, Lu Peng, Wang Qingkai, Cao Xiaowei, Li Zhijun. Study of the spatiotemporal variations of summer sea ice thickness in the Pacific Arctic sector based on shipside images [J]. Chinese Journal of Polar Research, 2021, 33(1): 37-48. |
[13] | Shen Xinyi, Zhang Yu, Chen Changsheng, Hu Song. Long-term spatial and temporal variations of sea ice in the Northwest Passage of the Canadian Arctic Archipelago [J]. Chinese Journal of Polar Research, 2021, 33(1): 71-87. |
[14] | Huang Jia, Zhang Zhaoru, Wang Xiaoqiao. Evaluation of four high-resolution sea ice reanalysis products in the Ross Sea and Amundsen Sea [J]. Chinese Journal of Polar Research, 2020, 32(4): 452-468. |
[15] | Zhou Qun, Chen Wen. Possible linkages between the 11-year solar cycle and Antarctic sea ice variability [J]. , 2020, 32(3): 290-300. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||