1 Steen‐Larsen H C, Risi C, Werner M, et al. Evaluating the skills of isotope‐enabled general circulation models against in situ atmospheric water vapor isotope observations[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(1): 246–263.
2 Noone D, Galewsky J, Sharp Z, et al. 2011. Properties of air mass mixing and humidity in the subtropics from measurements of the D/H isotope ratio of water vapor at the Mauna Loa Observatory[J]. Journal of Geophysical Research, 116(D22): D22113.
3 Sturm C, Zhang Q, Noone D, et al. 2010. An introduction to stable water isotopes in climate models: bene?ts of forward proxy modelling for paleoclimatology[J]. Climate of the Past, 6(1): 115–129.
4 王学界, 章新平, 张婉君, 等. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983–995.
5 胡家权, 庞洪喜. 低温冷阱大气水汽收集技术及其在水稳定同位素研究中的应用[J]. 极地研究, 2018, 30(2): 210–219.
6 Steen-Larsen H C, Masson-Delmotte V, Hirabayashi M, et al. What controls the isotopic composition of Greenland surface snow?[J]. Climate of the Past, 2014, 10(1): 377–392.
7 Craig H. Isotopic Variations in Meteoric Waters. Science, 1961, 133( 3465): 1702–1703.
8 Dansgaard, W. Stable isotopes in precipitation, Tellus, 1964, 16(4), 436–468.
9 Merlivat L, Jouzel J. Global climatic interpretation of the deuterium‐oxygen 18 relationship for precipitation[J]. Journal of Geophysical Research Oceans, 1979, 84(C8):5029–5033.
10 Benetti M, Reverdin G, Pierre C, et al. Deuterium excess in marine water vapor: Dependency on relative humidity and surface wind speed during evaporation[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(2): 584–593.
11 侯浩, 侯书贵, 庞洪喜. 阿尔泰山蒙赫海尔汗冰川不同水体稳定同位素空间分布特征及水汽来源[J]. 冰川冻土, 2014, 36(5): 1271–1279.
12 Jouzel J, Merlivat L, Lorius C. Deuterium excess in an East Antarctic ice core suggests higher relative humidity at the oceanic surface during the last glacial maximum[J]. Nature, 1982, 299(5885): 688.
13 Vimeux F, Masson V, Jouzel J, et al. Holocene hydrological cycle changes in the Southern Hemisphere documented in East Antarctic deuterium excess records[J]. Climate Dynamics, 2001, 17(7): 503–513.
14 Vimeux F, Masson V, Jouzel J, et al. Glacial-interglacial changes in ocean surface conditions in the Southern Hemisphere[J]. Nature, 1999, 398(6726): 410.
15 Jouzel J, Merlivat L. Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation[J]. Journal of Geophysical Research: Atmospheres, 1984, 89(D7): 11749–11757.
16 Ciais P, Jouzel J. Deuterium and oxygen 18 in precipitation: Isotopic model, including mixed cloud processes[J]. Journal of Geophysical Research: Atmospheres, 1994, 99(D8): 16793–16803.
17 何静, 庞洪喜, 侯书贵. 极地雪冰中过量17O研究进展[J]. 极地研究, 2015, 27(4): 392–401.
18 Samuels‐Crow K E, Galewsky J, Sharp Z D, et al. Deuterium excess in subtropical free troposphere water vapor: Continuous measurements from the Chajnantor Plateau, northern Chile[J]. Geophysical Research Letters, 2014, 41(23): 8652–8659.
19 Sodemann H, Aemisegger F, Pfahl S, et al. The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights[J]. Atmospheric Chemistry and Physics, 2017, 17(9): 6125.
20 Pfahl S, Wernli H. Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D20).
21 Jouzel J, Merlivat L. Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation[J]. Journal of Geophysical Research: Atmospheres, 1984, 89(D7): 11749–11757.
22 Petit J R, White J W C, Young N W, et al. Deuterium excess in recent Antarctic snow[J]. Journal of Geophysical Research: Atmospheres, 1991, 96(D3): 5113–5122.
23 Kavanaugh J L, Cuffey K M. Space and time variation of δ18O and δD in Antarctic precipitation revisited[J]. Global Biogeochemical Cycles, 2003, 17(1).
24 Uemura R, Masson-Delmotte V, Jouzel J, et al. Ranges of moisture-source temperature estimated from Antarctic ice cores stable isotope records over glacial-interglacial cycles[J]. Climate of the Past, 2012, 8(3): 1109–1125.
25 Dütsch M, Pfahl S, Sodemann H. The impact of nonequilibrium and equilibrium fractionation on two different deuterium excess definitions[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(23).
26 Miller M F. Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance[J]. Geochimica et Cosmochimica Acta, 2002, 66(11): 1881–1889.
27 Luz, B., and E. Barkan (2010), Variations of 17O/16O and 18O/16O in meteoric waters, Geochim. Cosmochim. Acta, 74(22), 6276–6286.
28 Majoube M. Fractionnement en oxygene 18 et en deuterium entre l’eau et sa vapeur[J]. Journal de Chimie Physique, 1971a, 68: 1423–1436.
29 Gat J R. Oxygen and hydrogen isotopes in the hydrologic cycle[J]. Annual Review of Earth and Planetary Sciences, 1996, 24(1): 225–262.
30 王永森, 马振民, 徐征和. 基于瑞利分馏模式的水体蒸发线斜率模型[J]. 水科学进展, 2011, 22(6): 795–800.
31 Landais, A., Capron, E., Masson-Delmotte,et al.: Ice core evidence for decoupling between mid-latitude atmospheric water cycle and Greenland temperature during the last deglaciation, Clim. Past Discuss., https://doi.org/10.5194/cp-2018-65, in review, 2018.
32 Casado M, Landais A, Masson-Delmotte V, et al. Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau[J]. Atmospheric Chemistry and Physics, 2016, 16(13): 8521–8538.
33 Touzeau A, Landais A, Stenni B, et al. Acquisition of isotopic composition for surface snow in East Antarctica and the links to climatic parameters[J]. The Cryosphere, 2016, 10(2): 837–852.
34 Horita J, Wesolowski D J. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature[J]. Geochimica et Cosmochimica Acta, 1994, 58(16): 3425–3437.
35 Elleh?j M D. Ice-vapor equilibrium fractionation factor: Experimental investigations and possible impacts on the understanding of the hydrological cycles on Earth and Mars[J]. 2011.
36 Markle B R, Steig E J, Buizert C, et al. Global atmospheric teleconnections during Dansgaard-Oeschger events[J]. Nature Geoscience, 2017, 10(1): 36.
37 Jouzel J, Stievenard M, Johnsen S J, et al. The GRIP deuterium-excess record[J]. Quaternary Science Reviews, 2007, 26(1–2): 1–17.
38 Masson-Delmotte V, Hou S, Ekaykin A, et al. A review of Antarctic surface snow isotopic composition: Observations, atmospheric circulation, and isotopic modeling[J]. Journal of Climate, 2008, 21(13): 3359–3387.
39 Uemura R, Motoyama H, Masson-Delmotte V, et al. Asynchrony between Antarctic temperature and CO2 associated with obliquity over the past 720,000 years[J]. Nature communications, 2018, 9(1): 961.
40 Markle, B. R. (2017). Climate dynamics revealed in ice cores: advances in techniques, theory, and interpretation (Doctoral dissertation).
41 Stenni B, Masson-Delmotte V, Selmo E, et al. The deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores (East Antarctica)[J]. Quaternary Science Reviews, 2010, 29(1–2): 146–159.
42 Schoenemann S W, Steig E J, Ding Q, et al. Triple water-isotopologue record from WAIS Divide, Antarctica: Controls on glacial-interglacial changes in 17Oexcess of precipitation[J].
Journal of Geophysical Research: Atmospheres, 2014, 119(14): 8741–8763.
43 Dütsch M L. Stable water isotope fractionation processes in weather systems and their influence on isotopic variability on different time scales[D]. ETH Zurich, 2016.
44 Kawamura K, Abe-Ouchi A, Motoyama H, et al. State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling[J]. Science advances, 2017, 3(2): e1600446.
45 Aemisegger F, Sturm P, Graf P, et al. Measuring variations of δ18O and δ2H in atmospheric water vapour using two commercial laser-based spectrometers: an instrument characterisation study[J]. Atmospheric Measurement Techniques, 2012, 5(7): 1491–1511.
46 Steen-Larsen H C, Johnsen S J, Masson-Delmotte V, et al. Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet[J]. Atmospheric Chemistry and Physics, 2013, 13(9): 4815–4828.
47 Wang Y, Hou S, Masson-Delmotte V, et al. A generalized additive model for the spatial distribution of stable isotopic composition in Antarctic surface snow[J]. Chemical Geology, 2010, 271(3–4): 133–141.
48 侯书贵, 王叶堂, 庞洪喜. 南极冰盖雪冰氢, 氧稳定同位素气候学: 现状与展望[J]. 科学通报, 2013, 58(1): 27–40.
49 Pang H, Hou S, Landais A, et al. Spatial distribution of 17O-excess in surface snow along a traverse from Zhongshan station to Dome A, East Antarctica[J]. Earth and Planetary Science Letters, 2015, 414: 126-133.
50 Winkler R, Landais A, Sodemann H, et al. Deglaciation records of 17O-excess in East Antarctica: reliable reconstruction of oceanic normalized relative humidity from coastal sites[J]. 2012.
51 Schoenemann S W, Steig E J. Seasonal and spatial variations of 17Oexcess and dexcess in Antarctic precipitation: Insights from an intermediate complexity isotope model[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(19). |