1 Araki T. A physical model of the geomagnetic sudden commencement. In: Engebretson, M.J., Takahashi, K., Scholer, M. (Eds.), Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves, Geophysical Monograph Series, AGU, Washington, DC, 1994, 81: 183.2 Lyon JG. The solar wind-magnetosphere-ionosphere system. Science, 2000, 288(5473): 1987.3 Wang C, Liu J, Li H, et al. Geospace magnetic field responses to interplanetary shocks. J Geophys Res, 2009, 114: A05211, doi:10.1029/2008JA013794.4 Araki T, Funato K, Iguchi T, et al. Direct detection of solar wind dynamic pressure effect on ground geomagnetic field. Geophys Res Lett, 1993, 20(9): 775-778.5 Newell PT, Sotirelis T, Wing S. Diffuse, monoenergetic, and broadband aurora: The global precipitation budget. J Geophys Res, 2009, 114(A09207), doi:10.1029/2009JA014326.6 Sandford P. Variations of auroral emissions with time, magnetic activity and the solar cycle. J Atmos Terr Phys, 1968, 30(12): 1921-1942.7 Frahm RA, Winningham JD, Sharber JR, et al. The diffuse aurora: A significant source of ionization in the middle atmosphere. J Geophys Res, 1997, 102(NO.D23): 28203-28214.8 Sandholt PE, Denig WF, Farrugia CJ, et al. Auroral structure at the cusp equatorward boundary: Relationship with the electron edge of low-latitude boundary layer precipitation. J Geophys Res, 2002, 107(A9): 1235.9 Newell PT, Lee AR, Liou K, et al. Substorm cycle dependence of various types of aurora. J Geophys Res, 2010, 115, A09226, doi:10.1029/2010JA015331.10 胡泽骏, 杨惠根, 艾勇, 等. 日侧极光卵的可见光多波段观测特征. 极地研究, 2005, 17(2).11 Hu ZJ, Yang H, Huang D, et al. Synoptic distribution of dayside aurora: Multiple-wavelength all-sky observation at Yellow River Station in Ny-?lesund, Svalbard. J Atmos Sol Terr Phys, 2009, 71(8-9): 794-804, doi:10.1016/j.jastp.2009.02.010.12 Han DS, Yang HG, Liang J, et al. High-latitude reconnection effect observed at the dayside dip equator as a precursor of a sudden impulse. J Geophys Res, 2010, 115, A08214, doi:10.1029/2009JA014787.13 Zhou X, Tsurutani BT. Interplanetary shock triggering of nightside geomagnetic activity: Substorms, pseudobreakups, and quiescent events. J Geophys Res, 2001, 106(A9): 18957-18967.14 Wing S, Sibeck DG. Effects of interplanetary magnetic field z component and the solar wind dynamic pressure on the geosynchronous magnetic field. J Geophys Res, 1997, 102(A4): 7207-7216.15 Zhou X, Fukui K, Carlson H, et al. Shock aurora: Ground-based imager observations. J Geophys Res, 2009, 114, doi:10.1029/2009JA014186.16 Han DS, Yang HG, Nosé M, et al. Dawnside particle injection caused by sudden enhancement of solar wind dynamic pressure. J Atmos Sol Terr Phys, 2008, 70(16): 1995-1999, doi:10.1016/j.jastp.2008.07.019.17 Zhou XY, Strangeway R, Anderson P, et al. Shock aurora: FAST and DMSP observations. J Geophys Res, 2003, 108(A4): 8019.18 Tsurutani B, Zhou XY, Arballo J, et al. Auroral zone dayside precipitation during magnetic storm initial phases. J Atmos Sol Terr Phys, 2001, 63(5): 513-522.19 Tsurutani B, Zhou XY, Vasyliunas V, et al. Interplanetary shocks, magnetopause boundary layers and dayside auroras: The importance of a very small magnetospheric region. Surveys in geophysics, 2001, 22(2): 101-130.20 Zhou X, Tsurutani BT. Rapid intensification and propagation of the dayside aurora: Large scale interplanetary pressure pulses (fast shocks). Geophys Res Lett, 1999, 26(8): 1097-1100.21 Hellinger P, Trávn?cek P, Mangeney A, et al. Hybrid simulations of the expanding solar wind: Temperatures and drift velocities. Geophys Res Lett, 2003, 30(5): 1211.22 Gary SP, Cairns IH. Electron temperature anisotropy instabilities: Whistler, electrostatic and z mode. J Geophys Res, 1999, 104(NO. A9).23 Thorne RM, Ni B, Tao X, et al. Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature. 2010, 467(7318): 943-946, doi:10.1038/nature09467.24 Gjerloev J, Hoffman R, Sigwarth J, et al. Typical auroral substorm: A bifurcated oval. J Geophys Res, 2008, 113(A3), A03211, doi:10.1029/2007JA012431. |