[1]Wittmaack,K.Secondary ion mass spectrometry as a means of surface analysis[J].Surface Science,1979,89(1–3):668-700[2]Mitchell,D.F.,Sproule,G[J].I. & Graham,M. J. Measurement of hydroxyl ions in thin passive oxide films using secondary ion mass spectrometry. Applications of Surface Science,1985,21(1–4):199-209[3]Waight,T.,Baker,J[J].& Peate,D. Sr isotope ratio measurements by double-focusing MC-ICPMS: techniques,observations and pitfalls. Intern. J. Mass Spectrometry,2002,221(3):229-244[4]Ramos,F.C.,Wolff,J[J].A. & Tollstrup,D. L. Measuring 87Sr/86Sr variations in minerals and groundmass from basalts using LA-MC-ICPMS. Chem. Geol,2004,211(1-2):135-158[5]Hahn,O.& Walling,E[J].Possibility of geological age determination of rubidium content minerals and rocks. Zeitschrift Fur Anorganische Und Allgemeine Chemie,1938,236(1/4):78-82[6]Patterson,C.Age of meteorites and the earth[J].Geochimica et Cosmochimica Acta,1956,10(4):230-237[7]Minster,J.F. & Allègre,C[J].J. 87Rb-87Sr dating of LL chondrites. Earth Planet. Sci. Lett,1981,56(0):89-106[8]Snyder,G.A. et al[J].Hf–W,Sm–Nd,and Rb–Sr isotopic evidence of late impact fractionation and mixing of silicates on iron meteorite parent bodies. Earth and Planetary Science Letters,2001,186(2):311-324[9]Lugmair,G.W.,Scheinin,N. B. & Marti,K. Sm-Nd age and history of Apollo 17 basalt 75075 - Evidence for early differentiation of the lunar exterior. Lunar and Planetary Exploration,1975[10]DePaolo,D.J. & Wasserburg,G[J].J. Nd isotopic variations and petrogenetic models. Geophys. Res. Lett,1976,3:249-252[11]DePaolo,D.J. & Wasserburg,G[J].J. Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophys. Res. Lett,1976,3:743-746[12]Lugmair,G.W.,Scheinin,N. B. & Marti,K.Sm-Nd age and history of Apollo 17 basalt 75075 - Evidence for early differentiation of the lunar exterior. Lunar Planet. Sci. Year,6: 1419-14[13]Edmunson,J.,Borg,L[J].E.,Nyquist,L. E. & Asmerom,Y. A combined Sm Nd,Rb Sr,and U Pb isotopic study of Mg-suite norite 78238: Further evidence for early differentiation of the Moon. Geochimica et Cosmochimica Acta,2009,73:514-527[14]Liu,T.,Li,C[J].& Lin,Y. Rb-Sr and Sm-Nd isotopic systematics of the lherzolitic shergottite GRV 99027. Meteorit. Planet. Sci,2011,46:681-689[15]Harvey,J.& Baxter,E[J].F. An improved method for TIMS high precision neodymium isotope analysis of very small aliquots (1–10 ng). Chemical Geology,2009,258(3–4):251-257[16]Amelin,Y.,Krot,A[J].N.,Hutcheon,I. D. & Ulyanov,A. A. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science,2002,297(5587):1678-1683[17]Connelly,J.N.,Bizzarro,M[J].,Thrane,K. & Baker,J. A. The Pb–Pb age of Angrite SAH99555 revisited. Geochimica et Cosmochimica Acta,2008,72(19):4813-4824[18]Bouvier,A.& Wadhwa,M[J].The age of the Solar System redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nature Geosci,2010,3(9):637-641[19]Galer,S.J. G[J].Optimal double and triple spiking for high precision lead isotopic measurement. Chemical Geology,1999,157(3–4):255-274[20]刘希军 et al.高精度铅同位素207Pb-204Pb 双稀释剂TIMS 测试方法[J].地球化学,2013,42(2):103-115[21]Hirt,B.,Herr,W. & Hoffmeister,W. Age determinations by the rhenium-osmium method. Radioactive Dating,1963: 35-[22]Creaser,R.A.,Papanastassiou,D[J].A. & Wasserburg,G. J. Negative thermal ion mass spectrometry of osmium,rhenium and iridium. Geochimica et Cosmochimica Acta,1991,55(1):397-401[23]Shirey,S.B. & Walker,R[J].J. Carius Tube Digestion for Low-Blank Rhenium-Osmium Analysis. Analytical Chemistry,1995,67(13):2136-2141[24]Shen,J.J.,Papanastassiou,D[J].A. & Wasserburg,G. J. Precise ReOs determinations and systematics of iron meteorites. Geochimica et Cosmochimica Acta,1996,60(15):2887-2900[25]Chen,J.H.,Papanastassiou,D[J].A. & Wasserburg,G. J. Re-Os systematics in chondrites and the fractionation of the platinum group elements in the early solar system. Geochimica et Cosmochimica Acta,1998,62:3379-3392[26]Smoliar,M.I.,Walker,R[J].J. & Morgan,J. W. Re-Os Ages of Group IIA,IIIA,IVA,and IVB Iron Meteorites. Science,1996,271:1099-1102[27]Meisel,T.,Walker,R[J].J. & Morgan,J. W. The osmium isotopic composition of the Earth's primitive upper mantle. Nature,1996,383(6600):517-520[28]Li,J.et al[J].Os,Nd and Sr isotope and trace element geochemistry of the Muli picrites: Insights into the mantle source of the Emeishan Large Igneous Province. Lithos,2010,119(1–2):108-122[29]Horan,M.F.,Smoliar,M[J].I. & Walker,R. J. 182W and 187Re-187Os systematics of iron meteorites - Chronology for melting,differentiation,and crystallization in asteroids. Geochimica et Cosmochimica Acta,1998,62:545-554[30]孙卫东,杜安道,杨刚,谢智 & 陈江峰.董岭ⅢCD铁陨石的Re-Os同位素组成[J].科学通报,2001,(01):66-68[31]Nyquist,L.et al[J].Mn-Cr isotopic systematics of individual Chainpur chondrules. Meteoritics,1994,29:512-513[32]Birck,J.L.,Rotaru,M[J].& Allègre,C. J. 53Mn-53Cr evolution of the early solar system. Geochimica et Cosmochimica Acta,1999,63(23–24):4111-4117[33]Nyquist,L.et al[J].Mn-Cr isotopic systematics of Chainpur chondrules and bulk ordinary chondrites. LPI Contributions,1994,844:28-30[34]Birck,J.-L. & Allegre,C[J].J. Manganese-chromium isotope systematics and the development of the early solar system. Nature,1988,331:579-584[35]Lugmair,G.W. & Shukolyukov,A[J].Early solar system timescales according to 53Mn-53Cr systematics. Geochimica et Cosmochimica Acta,1998,62(16):2863-2886[36]Lugmair,G.W. & Galer,S[J].J. G. Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochimica et Cosmochimica Acta,1992,56(4):1673-1694[37]Nyquist,L.et al[J].Manganese-chromium formation intervals for chondrules from the Bishunpur and Chainpur meteorites. Meteorit. Planet. Sci,2001,36:911-938[38]Wadhwa,M.,Zinner,E[J].K. & Crozaz,G. Manganese-chromium systematics in sulfides of unequilibrated enstatite chondrites. Meteoritics & Planetary Science,1997,32(2):281-292[39]Endress,M.,Zinner,E[J].& Bischoff,A. Early aqueous activity on primitive meteorite parent bodies. Nature,1996,379:701-703[40]Hutcheon,I.D.,Krot,A[J].N.,Keil,K.,Phinney,D. L. & Scott,E. R. D. 53Mn-53Cr Dating of Fayalite Formation in the CV3 Chondrite Mokoia: Evidence for Asteroidal Alteration. Science,1998,282(5395):1865-1867[41]Nyquist,L.,Kleine,T[J].,Shih,C.-Y. & Reese,Y. The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion,differentiation,and secondary mineralization. Geochimica et Cosmochimica Acta,2009,73(17):5115-5136[42]Shukolyukov,A.& Lugmair,G[J].W. Manganese-chromium isotope systematics of enstatite meteorites. Geochimica et Cosmochimica Acta,2004,68(13):2875-2888[43]Sugiura,N.& Hoshino,H[J]. Mn-Cr chronology of five IIIAB iron meteorites. Meteoritics & Planetary Science,2003,38(1):117-143[44]Goodrich,C.A. et al. 53Mn–53Cr and 26Al–26Mg ages of a feldspathic lithology in polymict ureilites[J]. Earth and Planetary Science Letters,2010,295(3–4):531-540[45]Trinquier,A, Birck J-L.,Allègre,C.J.,Gopel,C.&Ulfbeck,D. .53Mn-53Cr systematics of the early Solar System revisited[J]..Geochimica et Cosmochimica Acta,2008,72:5146-5163 |