极地研究 ›› 2025, Vol. 37 ›› Issue (3): 617-630.DOI: 10.13679/j.jdyj.20230081

• 研究进展 • 上一篇    

北极遥感影像云检测方法综述

雷雨虹1,尚子溦2,王星宇1,王之屹1,石宝龙1,迪里努尔·牙生1,王田宇1,王金艳1   

  1. 1兰州大学大气科学学院, 甘肃 兰州 730000; 
    2兰州市气象局, 甘肃 兰州 730000

  • 收稿日期:2023-12-06 修回日期:2024-01-30 出版日期:2025-09-30 发布日期:2025-09-25
  • 通讯作者: 王金艳
  • 基金资助:
    基础加强计划项目、国家重点研发计划项目和甘肃省自然科学基金重点项目

Review of Arctic cloud detection methods for remote sensing images

LEI Yuhong1, SHANG Ziwei2, WANG Xingyu1, WANG Zhiyi1, SHI Baolong1, DILINUER Yasheng1, WANG Tianyu1, WANG Jinyan1   

  1. 1College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China;
    2Lanzhou Meteorological Bureau, Lanzhou 730000, China
  • Received:2023-12-06 Revised:2024-01-30 Online:2025-09-30 Published:2025-09-25

摘要: 北极地区是全球气候变化响应的最敏感区之一, 精确的北极云检测对于提高北极地区乃至全球辐射能量收支估算精度具有重要意义。北极地区下垫面大多常年被冰雪覆盖且地面观测站点稀少。因此, 应用多光谱卫星遥感技术成为了北极云检测的必要途径, 卫星遥感云检测数据集为北极遥感影像云检测提供了重要的基础。本文梳理所汇总的国内外常用的卫星遥感云检测数据集, 较详尽地总结了传统阈值法、经典机器学习法以及深度学习法3类北极云检测方法的代表性工作。同时, 通过分析对比不同方法代表性工作的优点和不足, 评估了北极遥感影像云检测相关方法中存在的问题并探讨了国产风云卫星用于北极云检测研究的发展潜力。本文还基于北极云检测方法未来的发展趋势, 提出了构建北极联合组网观测系统和遥感综合数据库的建议。

关键词: 遥感影像云, 检测方法, 深度学习, 北极地区

Abstract: The Arctic region is one of the most sensitive areas in the world to climate change; therefore, accurate detection of Arctic clouds is of great significance for improving the accuracy of radiation energy balance estimation in the Arctic region and worldwide. Most of the Arctic region is covered by ice and snow throughout the year, and there are few ground observation stations. Accordingly, the application of multispectral satellite remote sensing technology has become a necessary means of Arctic cloud detection, and satellite remote sensing cloud detection datasets lay a crucial foundation for this methodology. This paper reviews the commonly used satellite remote sensing cloud detection datasets (domestic and international) and provides a comprehensive summary of the representative works of three types of Arctic cloud detection methods; i.e., the traditional threshold method, the classical machine learning method, and the deep learning method. By analyzing and comparing the advantages and limitations of representative works using different methods, the paper evaluates the existing problems in Arctic remote sensing image cloud detection methods and discusses the development potential of the domestic Feng Yun satellite for Arctic cloud detection research. Furthermore, based on future development trends for Arctic cloud detection methods, the paper provides recommendations for establishing the Arctic joint network observation system and a comprehensive remote sensing database.

Key words: remote sensing image cloud, detection methods, deep learning, Arctic