极地研究 ›› 2023, Vol. 35 ›› Issue (4): 566-579.DOI: 10.13679/j.jdyj.20230021

• 研究论文 • 上一篇    下一篇

覆冰粗糙度对翼型气动特性影响的数值研究

何志辉1  张永恒1  张旭耀1  张沥1  李泽1  杨文涛2   

  1. 1兰州交通大学新能源与动力工程学院甘肃 兰州 730070;
    2三峡新能源太阳山发电有限公司宁夏 吴忠 751999
  • 出版日期:2023-12-30 发布日期:2023-12-30
  • 通讯作者: 张永恒, E-mail: zhangyh@mail.lzjtu.cn
  • 作者简介:何志辉, 男, 1997年生。硕士, 主要从事寒冷地区风力机叶片覆冰气动特性研究。E-mail: 2571826034@qq.com
  • 基金资助:
    国家自然科学基金地区基金(51566007)资助

Numerical study of the effect of ice roughness on the aerodynamic characteristics of symmetric and asymmetric airfoils

He Zhihui1, Zhang Yongheng1, Zhang Xuyao1, Zhang Li1, Li Ze1, Yang Wentao2   

  1. 1 School of New Energy & Power Engineering, Lanzhou JiaoTong University, Lanzhou 730070, China; 
    2 Three Gorges New Energy Tai Yang Shan Power Co. Ltd., Wuzhong 751999, China
  • Online:2023-12-30 Published:2023-12-30

摘要: 寒冷地区风力发电机运行时叶片极易结冰结冰改变了叶片形貌从而影响了叶片的气动性能。为更好地研究分析风力机结冰叶片翼型表面覆冰粗糙度对其气动性能的影响规律采用计算流体力学方法对比研究了对称型(NACA-0012)及非对称型(NACA-23012)两种翼型在相同结冰条件和不同覆冰粗糙度参数下的气动特性。结果表明NACA0012NACA23012两种翼型前缘生成霜冰时覆冰粗糙度对两种结冰翼型气动性能均有显著影响当两种翼型前缘生成角状冰时, NACA23012结冰翼型气动性能受不同覆冰粗糙度的影响较小仅仅增加翼型后缘分离涡宽度NACA0012结冰翼型影响较大使失速攻角延迟。此外当翼型前缘生成霜冰时, NACA23012霜冰翼型阻力系数增长速度高于NACA0012结冰翼型。

关键词: 风力机, 寒冷地区, 翼型结冰, 覆冰粗糙度, 气动性能

Abstract: When wind turbines operate in cold regions, the blade is prone to ice formation, which changes the blade’s shape and affects its aerodynamic performance. To assess the influence of icing surface roughness on the aerodynamic performance of wind turbine blade airfoils, the aerodynamic characteristics of two types of airfoils, symmetric (NACA-0012) and asymmetric (NACA-23012), were compared under the same icing conditions and icing roughness parameters using a computational fluid dynamics method. The results showed that when rime ice was generated at the leading edge of both NACA0012 and NACA23012 airfoils, the ice roughness had a significant effect on the aerodynamic performance of both icing airfoils. When horn ice was generated at the leading edge of both airfoils, the effect of ice roughness on the aerodynamic performance of the NACA23012 icing airfoil was small, and only increased the width of the separation vortex at the trailing edge of the airfoil. There was, a greater effect of horn ice on the NACA0012 airfoil than the NACA23012 airfoil, which delayed the stall angle of attack of NACA0012 icing airfoil. In addition, when rime ice was generated at the leading edge of both NACA0012 and NACA23012 airfoils, the drag coefficient of NACA23012 with rime ice airfoil increased faster than that of NACA0012 icing airfoil.