极地研究 ›› 2023, Vol. 35 ›› Issue (4): 499-507.DOI: 10.13679/j.jdyj.20220421

• 研究论文 • 上一篇    下一篇

西北冰洋二氧化碳分压变异与海冰变化的关系

赵雨1,2,杨威2,吴瀛旭2,金梅兵1,祁第2
  

  1. 1南京信息工程大学海洋科学学院, 江苏 南京 210044;
    2集美大学极地与海洋研究院, 福建 厦门 361021
  • 出版日期:2023-12-30 发布日期:2023-12-30
  • 通讯作者: 祁第, E-mail:qidi60@qq.com
  • 作者简介:赵雨, 女, 1998年生。硕士研究生, 主要从事北冰洋表层碳循环与酸化研究。E-mail: yzhao0907@qq.com
  • 基金资助:
    国家重点研发计划(2019YFE0114800, 2019YFC1509101)、国家自然科学基金(42176230, 41941013)、福建省自然科学基金(2022J06026, 2019Jo5148)、中国科学院海洋大科学研究中心重点部署项目(COMS2020Q12)和南方海洋科学与工程广东省实验室(珠海)自主研发项目(SML2021SP306)资助

Relationship between pCOvariation and sea ice change in the western Arctic Ocean

Zhao Yu1,2, Yang Wei2, Wu Yingxu2, Jin Meibing1, Qi Di2   

  1. 1Marine Science College, Nanjing University of Information Science & Technology, Nanjing 210044, China
    2Polar and Marine Research Institute, Jimei University, Xiamen 361021, China
  • Online:2023-12-30 Published:2023-12-30

摘要: 北极海冰消退造成了开阔水域面积的增加, 进而促进表层海水吸收更多的二氧化碳(CO2), 导致表层CO2分压(pCO2)呈上升趋势。然而, 目前还缺少对于海冰消退过程中pCO2的显著变化及其与海冰联系的相关研究。本研究基于2008年中国第三次北极科学考察数据, 发现西北冰洋夏季海表pCO2的分布呈现出陆架区低海盆区高的特征, 整个海区总体上为大气CO2的汇, 其中陆架区碳汇通量为13.8 mmol·m–2·d–1, 而广阔的加拿大海盆区仅为3.7 mmol·m–2·d–1。本研究重点分析了海盆区高pCO2和低碳汇的驱动机制, 根据质量平衡模型模拟了加拿大海盆区在整个海冰融化过程以及随开阔海域时间延长的情景下, 海表pCO2的响应变化趋势。结果表明: (1)在融冰过程中, 海-气CO2交换驱动pCO2呈缓慢增加趋势; (2)在海冰完全融化后, 伴随着海面暴露在空气中时间的延长, 海-气CO2交换与升温共同作用使pCO2迅速增加, 且增加速率高于融化阶段。

关键词: 西北冰洋, pCO2, 海表温度, 海-气交换, 净初级生产力

Abstract: Sea ice retreat in the Arctic Ocean has caused an increase in open water area, which has consequently contributed to the absorption of more carbon dioxide (CO2) by surface seawater, and an increase in the partial pressure of CO2 (pCO2). However, there is a lack of research on the dramatic changes in pCO2 during sea ice retreat and its interaction with sea ice. Based on the 3rd Chinese National Arctic Research Expedition data in 2008, this study found that the distribution of summer sea surface pCO2 in the western Arctic Ocean was characterized by low values on the shelf and high values in the ocean basin. The study area overall was a sink for atmospheric CO2, with air-sea CO2 fluxes of 13.8 mmol·m–2·d–1 in the shelf area and 3.7 mmol·m–2·d–1 in the basin. This study used a mass balance model to investigate the response of sea surface pCO2 in the Canadian Basin during the whole period of sea ice melting process. The results showed that: (1) during the melting process, pCO2 slowly increased by air-sea CO2 exchange; (2) after the sea ice had completely melted and with prolonged exposure of the sea surface to the air, the combined effects of air-sea CO2 exchange and warming resulted in a rapid increase in pCO2, and the rate of increase was higher than that in the melting stage.

Key words:

western Arctic Ocean, pCO2,  sea surface temperature, air-sea exchange, net primary productivity