极地研究 ›› 2025, Vol. 37 ›› Issue (4): 842-852.DOI: 10.13679/j.jdyj.20240096

• 研究论文 • 上一篇    下一篇

基于动态贝叶斯网络的北极冰山路径预测研究

李贤岭1, 王子鑫1,4张海彬2,何进辉2,贾宜帅1,李宏恩1,王延林2,岳秀峰3, 岳前进1, 黄晓明1   

  1. 1大连理工大学化工海洋与生命学院, 辽宁 盘锦 124221;
    2中国船舶及海洋工程设计研究院, 上海 200011;
    3大连理工大学经济管理学院, 辽宁 大连 116024;
    4吉利汽车研究院(宁波)有限公司, 浙江 宁波 315300
  • 收稿日期:2024-11-18 修回日期:2025-02-16 出版日期:2025-12-30 发布日期:2026-01-12
  • 通讯作者: 黄晓明
  • 基金资助:

    工信部高技术船舶科研项目资助

Research on Arctic iceberg path prediction based on Dynamic Bayesian Network

LI Xianling1, WANG Zixin1,4, ZHANG Haibin2, HE Jinhui2, JIA Yishuai1, LI Hongen1, WANG Yanlin1, YUE Xiufeng3, YUE Qianjin1, HUANG Xiaoming1   

  1. 1 School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China;
    2 Marine Design and Research Institute of China, Shanghai 200011, China;
    3 School of Economics and Management, Dalian Univesity of Technology, Dalian 116024, China;
    4 Geely Automobile Research Institute (Ningbo) Co., Ltd., Ningbo 315300, China
  • Received:2024-11-18 Revised:2025-02-16 Online:2025-12-30 Published:2026-01-12
  • Contact: Xiaoming HUANG
  • Supported by:

摘要:

北极地区的环境条件复杂且恶劣, 冰山漂移对北极长期作业点设施的安全构成了潜在威胁。文通过评估北极长期作业点设施在停驻作业中的冰山碰撞风险, 提出一种基于动态贝叶斯网络的冰山漂移路径预测模型模型结合冰山漂移平衡方程与动量守恒法, 构建网络结构, 实现对冰山漂移路径的动态概率预测。另外, 模型基于实时更新环境数据, 可更精确输出冰山长期作业点设施之间的距离, 为碰撞风险评估提供量化依据。进一步, 基于预测结果进行风险情景分析, 并利用效用函数量化各时间点的碰撞风险, 实现了对北极长期作业点设施碰撞风险的精确评估, 显著提升了作业点设施安全防护能力


关键词: 动态贝叶斯网络, 冰山路线, 北极长期作业点, 碰撞风险评估

Abstract: The environmental conditions in the Arctic are complex and harsh, and iceberg drift poses a potential threat to the safety of long-term operation point facilities in the Arctic. This study evaluates the iceberg collision risk of Arctic long-term operation point facilities during stationary operations and proposes a Dynamic Bayesian Network (DBN)-based iceberg drift path prediction method. The method combines the iceberg drift equilibrium equation with the momentum conservation method to construct a network structure and realize the dynamic probabilistic prediction of the iceberg drift path. Through real-time environmental data updating, the model outputs the distance of the iceberg relative to the Arctic long-term operation point facilities, providing a quantitative basis for collision risk assessment. The risk scenario analysis based on the prediction results quantifies the collision risk at each time point using the utility function, which is of guiding significance for improving the risk assessment and safety protection capability of Arctic long-term operation point facilities.

Key words: Dynamic Bayesian Network, iceberg path, Arctic long-term operation point facilities, collision risk assessment